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Direct numerical simulations were used to study the dynamics of a vortex ring 
impacting a wall at normal incidence. The boundary layer formed as the ring 
approaches the wall undergoes separation and roll-up to form a secondary vortex ring. 
The secondary ring can develop azimuthal instabilities which grow rapidly owing to 
vortex stretching and tilting in the presence of the mean strain field generated by the 
primary vortex ring. The stability of the secondary ring was investigated through 
complementary numerical experiments and stability analysis. Both perturbed and 
unperturbed evolutions of the secondary ring were simulated at a Reynolds number of 
about 645, based on the initial primary-ring propagation velocity and ring diameter. The 
linear evolution of the secondary vortex-ring instability was modelled analytically by 
making use of a quasi-steady approximation. This allowed a localized stability analysis 
following Widnall & Sullivan’s (1973) earlier treatment of an isolated vortex ring. 
Amplitude evolution and growth-rate predictions from this analysis are in good 
agreement with the simulation results. The analysis shows that the secondary vortex 
ring is unstable to long-wavelength perturbations, even though an isolated ring having 
similar characteristics would be stable. 

1. Introduction 
There has been an increasing recognition in the last few decades that organized 

vortical motions are of great importance in the maintenance of turbulent shear flows. 
The fundamental dynamics governing the motion of vortex tubes or rings, and their 
interactions, have been studied extensively as generic models for the more complex 
behaviour observed in turbulent flows. In particular, the interaction of discrete vortex 
structures with a boundary has often been used to examine interesting and complex 
phenomena such as unsteady separation, vortex reconnection, vortex stretching/ 
intensification, vortex instability, and production and dissipation of coherent 
vorticity. A recent review of these phenomena and how they may be important in 
applications has been given by Doligalski, Smith & Walker (1994). Other examples of 
this modelling approach for wall-bounded flows can be found in Acalar & Smith 
(1987), Walker et al. (1987), Chu & Falco (1988), and Lim (1989). A similar approach 
has been taken to study the interaction of vorticity with a free-surface, both 
experimentally (Willmarth et al. 1989; Bernal & Kwon 1989; and Sarpkaya & Suthon 
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199 1); and numerically (Dommermuth 1993). The present study considers the 
evolution of a primary vortex ring as it interacts with a solid boundary to produce a 
coherent secondary vortex ring. Subsequent three-dimensional deformation of the 
secondary ring occurs through the evolution of azimuthal instabilities due to its 
interaction with the primary ring. Previous experimental observations of vortex 
ring/wall interactions (see for example Walker et al. 1987) have given a rather clear 
qualitative picture of this overall sequence but leave unanswered questions about the 
nature and physics of the instability process. 

This study focuses on the instability of the secondary vortex ring in the presence of 
the primary ring and a solid boundary. Instabilities of this type can lead to dramatic 
changes in flow structure and the generation of smaller-scale coherent vortex motions 
whose vorticity feeds on the parent structure. This reduction in length scale and 
dispersal of vorticity into the surrounding fluid ultimately results in the dissipation of 
these structures through the action of viscous diffusion. The phenomena of generation 
(or regeneration) and dissipation of vorticity are key features of the energy transfer 
process in turbulent shear flows. Although this model problem cannot necessarily be 
compared directly to the energetic vortex structures in wall-bounded shear flows, the 
study of vortices, subsequent instabilities, and their dynamical evolution are 
nonetheless relevant in a more general sense. Robinson (1989, 1991) has suggested that 
progress in understanding the dynamics of vortex formation, evolution, and interaction 
is key to obtaining a fuller understanding of the coherent motions comprising a 
turbulent boundary layer, and their dynamical role in its maintenance. In this regard, 
the regenerative properties of the near-wall streamwise-oriented vortices have recently 
been clearly identified (Smith et al. 1991; Falco 1991; Brooke & Hanratty 1993; 
Bernard, Thomas & Handler 1993). 

To investigate the basic instability mechanisms associated with the secondary vortex 
ring, a complementary approach of numerical experiments and modelling via stability 
analysis was followed (Swearingen, Crouch & Handler 1991). The interaction of a 
vortex ring with a wall was directly simulated using three-dimensional fully pseudo- 
spectral computations (i.e. in all three spatial coordinates) ; unperturbed and 
azimuthally perturbed vortex rings were considered. In these simulations an impulsive 
body force was used to generate the primary vortex ring in much the same manner as 
it would be formed experimentally. The numerical results are compared to an 
analytical model for the linear evolution of the instability. The analytical model 
employed simplifying assumptions that recast the problem into an inviscid analysis for 
the stability of a vortex ring in close proximity to another vortex ring. The analysis 
followed the approach used by Widnall & Sullivan (1973) for the long-wavelength 
stability of an isolated vortex ring. Their results show that isolated thin-core vortex rings 
are stable to long-wavelength instabilities (over the range of parameters for which the 
analysis is valid - see Widnall, Bliss & Tsai 1974). The instability normally associated 
with an isolated ring stems from a short-wavelength mechanism (Widnall et al. 1974; 
Moore & Saffman 1974; Saffman 1978). However, the present analysis shows that 
when a thin-core vortex ring is in close proximity to another ring, the stability 
characteristics are altered and long-wave disturbances can grow. 

Recently, there have been a number of numerical simulations focusing on the early 
stages of the interaction of the primary ring with a solid boundary. Orlandi (1990) 
studied the two-dimensional case and Orlandi & Verzicco (1993) extended this work to 
the axisymmetric and fully three-dimensional cases. In the work of Orlandi & Verzicco, 
a finite difference scheme was used to perform axisymmetric simulations of the collision 
of a vortex ring with a free-slip as well as a no-slip boundary. The axisymmetric 
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simulations for the no-slip case, performed over a range of ring Reynolds numbers, 
produced ring trajectories and other flow details which were in reasonable qualitative 
agreement with the Walker et al. (1987) experiments. Differences between simulation 
and experiment were attributed to three-dimensional effects, absent in the axisymmetric 
calculations, and differences in the initial ring vorticity distribution. 

The fully three-dimensional calculations of Orlandi & Verzicco (1993), which can be 
most closely compared to the current work, were performed at both low and high 
resolution for a single Reynolds number. Their simulations were able to reproduce the 
same kind of instability revealed in the Walker et al. (1987) experiments. They find that 
the ejection of the secondary ring is only slightly affected by the presence of azimuthal 
instabilities in the primary ring (e.g. the ejection velocity of the secondary ring is 
greater in the three-dimensional case than that of the axisymmetric case). An important 
conclusion derived from their work is that the secondary ring is fundamentally more 
unstable than the primary. This conclusion is based on an analysis of the invariants of 
the rate-of-strain tensor which reveals that the secondary ring is more sheet-like than 
the primary and, in addition, there is a greater tendency for vorticity-strain alignment 
in the secondary ring. However, no attempt was made in Orlandi & Verzicco (1993) to 
analyse the onset and linear evolution of the secondary-ring instability, an analysis 
which is presented here in $4. 

2. Numerical simulation methodology 
2.1. Solution of the equations of motion 

The accurate simulation of the three-dimensional interaction of a vortex ring with a no- 
slip wall presented certain numerical issues which required special consideration. A 
principal issue of obvious concern was the establishment of the vortex ring itself within 
the computational domain. The ring should be generated sufficiently far from the wall 
with which it will eventually impact and its radius, core diameter, and initial strength 
(circulation) should be easily controlled. In this investigation, the stability of the 
secondary ring generated by the primary ring as it interacted with the wall was of 
primary concern. Therefore, a method of introducing 'azimuthally dependent 
disturbances onto the primary ring was also required. 

It is possible to generate a vortex ring with the desired characteristics by specifying 
an appropriate initial condition for the velocity field which is kinematically consistent 
with the desired initial vorticity field and is also divergence free. The specification of 
such a field would present no difficulties in a domain with periodic boundary 
conditions in all three coordinate directions. In this problem, however, no-slip 
boundary conditions were needed on at least one wall which, along with the 
incompressibility constraint, required that both the wall-normal velocity component 
and its wall-normal derivative be zero at the no-slip wall. A suitable method which 
satisfied these constraints could not be developed, although it may be possible to 
generate such an initial condition by using an appropriate combination of image 
vortices. Experimentally (Sallet & Widmayer 1974), vortex rings are typically generated 
by a piston stroke which forces a puff of fluid through an orifice. This method has been 
analysed in detail by Saffman (1975). Implementation of this method would entail 
addition and removal of mass which would have been numerically cumbersome to 
implement in the spectral code used here. To avoid these difficulties, a vortex ring was 
instead generated in a dynamical manner by introducing an appropriate impulsive 
body force directly into the equations of motion. This method of generating vorticity 
in two dimensions has been addressed theoretically by Cantwell (1986), and numerically 



4 J .  D. Swearingen, J .  D. Crouch and R. A .  Handler 

by Goldstein, Handler & Sirovich (1993) who used body forces to successfully create 
no-slip surfaces in a spectral code. A complete description of the methodology used to 
do this is given later in $2.2. 

The Navier-Stokes equations were solved in rotational form : 

where V is the velocity vector, a = V x V is the vorticity vector, 17 = p / p  +t( V. V ) ,  p 
is the pressure, p is the density, u is the kinematic viscosity, and f is a body force 
described in detail below. In addition, the incompressibility constraint was enforced : 

v. V =  0. (2.2) 

Cartesian coordinates (x, y ,  z)  were used, where x and y are the planar or horizontal 
coordinates and z is perpendicular to the wall. The corresponding velocity field is 
(u, u, w) ,  where w denotes the component of velocity in the direction normal to the wall. 
Here, all variables are non-dimensionalized by a length scale corresponding to the half- 
height between upper and lower boundaries, and by a unit velocity scale. Note that to 
obtain alternative scalings, such as that used by Orlandi & Verzicco (1993), the initial 
vortex ring characteristics could be utilized. For example, the time scale in their 
simulations is related to the non-dimensional time used in the present study by the 
factor T,/R; where ro is the initial ring circulation and R, is its initial radius (see figure 
8a). 

The governing equations were recast in the manner suggested by Orszag & Patera 
(1981). The final equation system, in which the pressure has been eliminated, consisted 
of a fourth-order equation for the vertical velocity, w: 

and a second-order equation for the vertical vorticity, 52,: 

where H ,  = (VxQ) ,+ f , ,  Hv = (VxQ) ,+ f , ,  H ,  = ( V x Q ) , + f , .  (2.5ec) 

Following the solution of the equations given above, the streamwise and spanwise 
velocity components, u and u, were recovered from the incompressibility condition. 
This method ensured the exact satisfaction of continuity at the end of each time step. 

To solve equations (2.3k(2.5) a spectral spatial discretization of the velocity field 
was used: 

k = - K / 2  m = - M / 2  n=O 

where Pare the Fourier-Chebyshev coefficients, 01 = 2n/L,, = 2n/L,, L, and L, are 
the domain lengths in the horizontal plane, and T, are Chebyshev polynomials. For the 
temporal discretization a Crank-Nicolson scheme was used for the diffusion operator 
and a second-order Adams-Bashforth scheme was used for the nonlinear terms. The 
Poisson equations which arise from such a discretization were solved using the tau 
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method (Gottleib & Orszag 1977). Details of the numerical solution methodology are 
given in Kim, Moin & Moser (1987). In all simulations the time step was chosen so that 
the Courant-Friedrichs-Lewy (CFL) number, defined by 

never exceeded 0.2, ensuring numerical stability and time accuracy. The non- 
dimensional time step utilized for the calculations reported here was At = 0.002. The 
computational domain used for this study was of size L, = L, = 5 in the horizontal 
plane and the height in the normal coordinate direction was L, = 2. A 96 x 96 x 65 
computational grid in the x-, y- ,  and z-directions respectively was used in all of the 
calculations. This grid size corresponds to the maximum size attainable for the code 
running on a CRAY XMP/216; as shown subsequently ($2.3) the spatial accuracy 
achieved using this grid size is adequate. Nominally, the vortex ring with an initial ring 
diameter of 1 was generated at a distance of 0.5 from the lower boundary of the domain 
located at z = - 1.  At the boundary nearest the origin of the ring no-slip conditions 
given by 

were used. Alternatively, the shear-free conditions given by 

u = v = w = o  

were also used at this boundary. However, the choice of t.,e boundary condition 
utilized nearest the generation point was not observed to significantly change the 
formation of the ring or any aspects of its subsequent evolution. The no-slip condition 
given by (2.8) was used at the wall where the primary ring eventually impacted. 

2.2. Specijication of the impulsive force 
The conventional methodology for generating a single vortex ring experimentally is to 
eject a puff of fluid through a circular sharp-edged orifice or nozzle. The cylinder slug 
of fluid that emerges eventually rolls up into a propagating vortex ring of total 
circulation T', radius R, and core size a. In the simplest manner, this initiation of a vortex 
ring is often idealized as being produced by a circular disk of radius R which is 
suddenly moved normal to its plane and then brought to rest again. The details of the 
formation process have been considered in a number of studies and the reader is 
referred to Magarvey & MacLatchy (1964a), Maxworthy (1972), Sallet & Widmayer 
(1974), and Saffman (1975); discussion of vortex ring generation in terms of an 
impulsive force applied over a circular area is also given in the text by McCormack & 
Crane (1973). Analogously, this study used an impulsive body force applied to a 
cylindrical region of fluid to generate a vortex ring with the desired properties. The 
impulsive body force introduced directly into the equations of motion was of the form 

(2.10) 

Here r and 8 specify a cylindrical coordinate system (for ease of formulation) that can 
be related to the Cartesian coordinates of the original computational domain by 

fr(r, 8, z, t )  = dF( t )  .F(z) X ( r ,  8). 

r = [(x - x0)' + 0, - yo)2]1'2 and 8 = tan- (2.1 1) 
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where the point (x,, yo)  gives the location in the horizontal plane where the body force 
application was centred. Only the wall-normal component of the force&, was specified 
since it was desired to generate a ring at normal incidence to a wall in a specified (x,y)-  
plane (i.e. f ,  = .f, = 0). Note that the other body force components could be specified 
in an appropriate way so that rings of any desired incidence to the solid boundary 
would be produced. This has been done and the study of the ring interaction with an 
inclined wall will be’ reported elsewhere (see Lim 1989 for an experimental description 
of this interaction). 

In (2.10), A? is an amplitude constant which was adjusted to obtain a ring of the 
desired circulation strength ; the time-dependent function T(t) was used to ensure that 
the impulsive force was applied smoothly in time and that it decayed to zero amplitude 
soon after the ring was generated. This time window function was taken in the 
following form : 

s ( t )  = f[l +tanha(7-t’)], (2.12a) 

where t’(t) = [(t-  t 0 ) 2 ] ” 2  (2.12 b) 

and to prescribed the location in time at which the window function was applied, 
7 specified the duration of the time window, and a the ‘smoothness’ with which the 
window was applied. (Note that a = co would correspond to a rectangular window 
function with step discontinuities at t = to k7). A plot of this time window function is 
shown in figure 1 (a). The time-dependent introduction of the body force prescribed by 
this function was always applied at the beginning of the calculation, normally with 
t ,  = 0.05, and served to eliminate discontinuities at the beginning and end of the 
impulsive force introduction. Similar in shape to the time window function Y ( t ) ,  F ( z )  
was a tapered window function (spatial) used to confine the impulsive force to a 
cylindrical region with small extent in the wall-normal direction : 

9 ( z )  = $[1 +tanhb(B,-z‘)], (2.13 a) 

where z’(z) = [(z - zo)2]1’2 (2.1 3 b) 

and z,, was the point in the normal direction where the impulsive force distribution was 
centred, B, determined the axial length of the cylindrical region over which the 
impulsive force was applied, and p prescribed the smoothness of the spatial tapering 
in this direction. Using the analogy to the experimental generation of a vortex ring, 
function F(z) essentially defined the axial length (here nominally of extent = zo f 0.1) 
of the cylindrical fluid slug emerging from the orifice to form the ring. 

Function %(r,8) was a superposition of several other functions and was used to 
obtain a ring with the desired vorticity profile, ring diameter, and core diameter and 
to allow the addition of azimuthally dependent disturbances. This function took the 
form 

%(r, 6)  = h,(r) + h&) C en cos (no+ #,A (2.14~) 

where h,(r) = f[ 1 + tanh y(C, - r)] (2.14b) 

specified an approximately cylindrical region of radius C,, across which the impulsively 
applied force was constant (i.e. analogously, the cross-section of the fluid slug); outside 
this region the force was zero (C,  approximately determined the eventual radius R of the 
generated vortex ring). The tanh profile provided a smooth transition between these 
two regions; the parameter y determined the extent of this transition region and thus 

N 

71=1 
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FIGURE 1 .  Windowing functions used in prescribing the form of the impulsively applied body force 
for the primary ring generation. (a) Time windowing function F(t); (b)  functions h,(r) (-) and 
h,(r) (---) used to prescribe the primary ring characteristics and disturbance location. 
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FIGURE 2. Wavenumber (k,) spectra for a ring with a mode-6 disturbance at t = 1.8. The spectrum, 
q5, is defined as 1 ~ , 1 ~ ,  where the a, are the complex Fourier amplitudes. The wavenumber axis is the 
wavenumber index m (k, = B(m- 1 )  for m = 1, M / 2 ,  equation (2.6)). ......, u ;  ~ , v ;  ---, w. 

the approximate vortex-ring-core diameter. The second term in equation (2.14a) 
provided for the superposition of a small disturbance on the basic impulsive force 
distribution provided by function hl(r).  Function h,(r) was constructed to isolate the 
applied disturbance only to the core region of the vortex ring eventually generated: 

h,(r) = {f[ 1 + tanh S(D, - r ) ] }  {a[ 1 + tanh T(r - E,)]). (2.14~) 

Parameters 6, 7, D,, E, could be adjusted to control where the disturbance was 
introduced with respect to the primary force distribution. Functions h,(r) and h,(r) are 
shown in figure 1 (b). The parameters E ,  and q5, are the amplitude and random phase 
respectively of individual azimuthal modes. The specification of the body force 
described by (2.10)-(2.14) allowed the introduction of any desired azimuthal 
disturbance to the primary vortex ring. 

Although vortex rings of widely varying characteristics could be generated using the 
methodology described by (2.10)-(2.14), no attempt was made to exhaustively study 
the generation process. Rather, the vortex rings generated were prescribed to 
approximately match those observed in the experimental work of Walker et al. (1987) 
as discussed below in $3.  Qualitatively, however, it was found that the vortex ring 
circulation and propagation velocity could be adjusted by changing either the 
amplitude constant d or the total length of time over which the impulsive force was 
applied (approximately 27). 

2.3. Spatial accuracy 
To determine the spatial accuracy (convergence) of the simulations, wavenumber 
spectra for the velocity field were computed. The spectra were obtained by taking the 
Fourier transform of each velocity component from a simulation of a perturbed 
primary ring (see case ii described in $3.)  The results shown in figure 2 were obtained 
at an instant in time ( t  = 1.8, refer to figures 5 and 7) for which the primary ring was 
sufficiently far from the wali so that a secondary ring had not yet formed. The spectra 
in the spanwise y-direction (k, spectra) shown in figure 2 were obtained from the 
velocity field V(xo,y , zo) ;  the coordinate x, was set to LJ2,  the centre of the ring, and 
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zo, the wall-normal coordinate, was chosen such that the y-component of velocity 
(root-mean-square value), u, was a maximum (i.e. spectra along a line in the horizontal 
plane of the ring but below the centre of the vortex cores). The results show spectra 
exhibiting lobes, or local maxima, which can all be related to the two dominant length 
scales, the ring and core diameters, and their harmonics. It is evident that the dynamic 
range of the calculation (ratio of the maximum spectral energy to the lowest) is six to 
nine orders of magnitude and there is no evidence of any energy pile-up at high 
wavenumbers. Thus, the grid-scale velocity amplitudes are 1 03-lo4 times smaller than 
the energy-containing low-wavenumber modes, indicating sufficient accuracy for the 
purposes of our work. Chebyshev spectra (z-direction) were also obtained and show 
approximately the same spectral decay. It should be noted that in high-resolution 
calculations of fully developed channel flow turbulence (Kim et al. 1987) the dynamic 
range in spectral energy was never more than seven orders of magnitude. 

3. Numerical simulation results 
A laminar vortex ring was generated and allowed to propagate unimpeded through 

quiescent fluid before interacting with the solid boundary. The initial primary ring can 
be characterized by its Reynolds number Re, = V,D,/v ,  based on the initial 
propagation velocity V,, the initial ring diameter Do, and the kinematic viscosity v. 
Walker et al. (1987) observed that primary rings with Re, in the range 600-1300 lead 
to similar qualitative flow behaviour. Thus only representative cases at Re, z 645 are 
discussed here. Typically, the ring diameter was chosen to be Do = 1 relative to the 
5 x 5 domain size in the horizontal plane. These are non-dimensionalized based on the 
characteristic length defined by half the normal coordinate distance between two 
horizontal bounding surfaces (one of these would be the solid boundary where the ring 
interaction eventually took place). Nominally, these horizontal bounding surfaces were 
located at z = f 1 .O. A schematic detailing the computational domain and the various 
parameters defining the vortex-ring characteristics is given in figure 3. For clarity only 
one-half of the vortex ring is sketched, but the simulations utilized a complete and fully 
three-dimensional vortex ring. The large size of the domain in the horizontal plane 
relative to the vortex-ring diameter allowed for the eventual increase in ring diameter 
during the wall interaction process without significant periodic-domain end effects. The 
primary-ring core was relatively thin with an initial-core radius to ring-radius ratio of 
approximately 0.2. 

Two simulations at the chosen Re, are discussed: (i) unperturbed and (ii) perturbed. 
In the perturbed case, disturbances were introduced into the coherent secondary ring 
generated during the primary ring/wall interaction process. More specifically, 
disturbances of the form prescribed by (2.14~) were superimposed on the primary ring 
during the generation process at the beginning of the calculation and these subsequently 
were imparted to the secondary ring. In both unperturbed and perturbed cases the 
disturbance field prescribed contained a spectrum of thirty modes (i.e. N = 30 in 
(2.14a)) with each mode given a randomly chosen phase 9,. The two cases then differed 
only in terms of the relative amplitudes E ,  set for each mode contained in the spectrum 
of the disturbance field. No significant distortion of the secondary vorticity was 
observed (i.e. the unperturbed case) when the disturbance field contained the 
background spectrum of azimuthal modes at amplitudes 6, = relative to the 
overall initial strength of the primary ring. Unstable evolution of a selected mode (i.e. 
perturbed case) was observed when its amplitude was increased to en z lo-' above the 
background spectrum amplitude. Here, detailed results for the evolution of a 
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L:=2 

x=o y = o  

FIGURE 3. Schematic of a vortex ring located in the computational domain. 

disturbance with six wavelengths (n = 6 in ( 2 . 1 4 ~ ) )  around the ring are presented. A 
mode n = 6 azimuthal disturbance was chosen for discussion because it is the 
maximum wavenumber for which the long-wavelength approximation used in the 
analytical work remains ‘fully valid ’ (see 94). Other wavenumber disturbances were 
considered (single mode n = 3 and modes n = 3 , 6  in combination), but the results for 
these simulations are well represented by the results presented here for n = 6. For each 
simulation, sixty three-dimensional realizations of the flow separated by At = 0.1 were 
stored for further analysis. Example perspective views of the vortex ring development 
at t = 4.1 for both the unperturbed and perturbed cases are shown in figure 4.  Here 
surfaces of constant vorticity magnitude are plotted in three dimensions as cutaway 
views (i.e. in only half of the computational domain) so that the vortex cores can easily 
be discerned. Superimposed on the constant-vorticity surfaces in the plane of the cut 
(an (x, z)-plane) are coloured contours of constant 52, vorticity with positive vorticity 
shown as shades of red/yellow and negative as blue/green. The primary ring 
(distinguished as the blue/green core on the left-hand side of each realization) has 
interacted with the solid boundary to produce a coherent secondary vortex ring 
(distinguished as the core interior to the primary ring but coloured red/yellow on the 
left). The realization in figure 4 (a)  shows the unperturbed case ; the low-amplitude 
background spectrum of disturbances initially introduced has not produced an 
unstable evolution of the secondary ring. Conversely the realization for the perturbed 
case of figure 4(b)  where the n = 6 mode amplitude was introduced at a higher level 
than the background spectrum of disturbances shows an unstable evolution. This is 
evidenced by the significant azimuthal distortion in the secondary ring. It is observed 
that both the perturbed and unperturbed cases evolve in exactly the same manner until 
the point ( t  z 3.2) when then = 6 mode disturbance has grown significantly. It is worth 
noting here that the evolution of the instability in the secondary ring is reasonably well 
resolved in these simulations; approximately 17 grid points are contained in one 
wavelength of the n = 6 mode disturbance. 

The temporal evolution of the primary vortex ring and the secondary vorticity field 
it generates on approach to the no-slip boundary is shown in figure 5. Contours of 
constant vorticity (Q, for this view) on the (x,y)-plane of symmetry are plotted at six 
discrete time steps for the perturbed case (ii) with a mode n = 6 azimuthal disturbance. 
In this figure, the solid boundary is at z = + 1 and only a portion of the entire plane 
is shown for clarity. When the primary ring is approximately two ring radii from the 
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FIGURE 4. Perspective view of the vortex ring/wall interaction (a) without, and (b) with an azimuthal 
mode-6 perturbation at t = 4.1. Surfaces are of constant vorticity magnitude If21 = 3.0. Coloured 
regions show constant contours of 8,; green to blue (- 3.2 to - 34.9); yellow to red (+ 3.2 to + 34.9). 
In each realization, the wall is located at the top of the domain shown. 

solid surface, a boundary layer is formed adjacent to the wall as a natural consequence 
of the no-slip condition at the boundary and the radial flow induced by the ring. 

The radius of the ring increases as it approaches the wall in agreement with inviscid 
theory. This is accompanied by a commensurate decrease in the core size. Unsteady 
separation of the boundary layer formed on the wall arrests further radial growth of 
the primary rings and ultimately leads to the ejection of a coherent secondary vortex 
ring of opposite rotation. An examination of the pressure field at the wall (not given 
here) showed that the pressure increases with increasing radial distance from the centre 
of the primary ring core where the pressure is a minimum. This adverse radial pressure 
gradient is the cause of the separation of the wall boundary layer as discussed in 
Walker et al. (1987). The detachment of vorticity from the wall is associated with the 
rebounding of the primary vortex ring away from the wall. The sheet of detached 
vorticity azimuthally surrounds the primary ring. Further evolution of this process 
produces an elongated region of concentrated secondary vorticity which subsequently 
pinches off to form a coherent axially symmetric secondary vortex ring. Assuming 
sufficient initial strength in the primary ring, the process will be repeated to form a 
another ring, and at t = 4.4 it is evident that the separated boundary-layer vorticity is 
just beginning its coalescence into such a tertiary ring. 

Once formed, the secondary ring propagates around the primary ring under the 
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FIGURE 5. Temporal evolution of the primary and secondary rings. Contours are of constant 
vorticity (52,) and the wall is at z = 1.0. Negative vorticity contours are shown as dashed lines. 
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FIGURE 6 .  Trajectories of the primary and secondary rings. Simulation, Re,, x 645: 0, primary; (*), 
secondary; 0,  location corresponding to the origin of the secondary-ring trajectory. Experiments 
(Walker et al. 1987), Re,, = 564: ---, primary; ---, secondary. The time step between data points 
is At = 0.1. 

combined influence of the primary- and secondary-ring circulations (Biot-Savart 
effects). Meanwhile, the position of the primary ring remains relatively fixed. During 
this mutual interaction, the secondary-ring core is continually sheared by the primary 
ring giving the secondary core a near-elliptic cross-section. In the absence of any 
growing azimuthal perturbation (case i), the secondary ring simply progresses over the 
top of the primary ring and then down through the centre where it merges with the still- 
existing wall boundary-layer vorticity. Subsequent re-ejection can occur if the primary 
ring still maintains sufficient energy. Although not shown in the evolution of figure 5 ,  
the rather weak tertiary ring behaves in a similar way to the secondary ring, but it does 
not significantly influence the motions of the secondary ring. The events described here 
are qualitatively similar to those observed in some detail in previous experimental 
efforts (Magarvey & MacLatchy 1964b; Yamada & Matsui 1982; Walker et al. 1987), 
providing validation that the numerical simulations faithfully reproduced the flow 
behaviour. 

A comparison between the experimental results of Walker et al. (1987), for which 
Re, = 564, and the numerical simulation results of the present study is given in figure 
6. The trajectories of the vortex-ring cores in the (x, z)-plane of symmetry are shown 
for the mode n = 6 disturbance case. The location of a vortex core at any instant in 
time is given by the centre of vorticity denoted by its location above the wall, ,T, and 
its distance from the centre of the ring, X. The centre of vorticity (i.e. the first moment 
of the vorticity distribution) is defined by 
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3 FIGURE 7. Perspective views of a vortex ring impinging on a wall with a mode-6 azimuthal disturbance present. Surfaces are of constant vorticity 
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where 52, is the spanwise vorticity, A is the region over which 52, 2 k52,,,, and Tis  the 
vortex-core circulation given by 

I-= 52,dxdz. (3.2) JA 
At a particular time instant, 9,,, specifies the peak vorticity magnitude of the vortex 
core under consideration and the threshold level k determines the closed contour in the 
(x, z)-plane which defines the vortex-core cross-section. Threshold values in the range 
0.00625 to 0.20 were examined. The choice of a particular value in this range was 
driven by the need to select a contour which would include as much of the ring vorticity 
as possible (i.e. largest A )  yet which would define a finite domain for the ring. To best 
balance these conflicting considerations, a threshold value of k = 0.0375 was somewhat 
arbitrarily selected for use in all subsequent calculations. From the parameter study, 
it was found that when this value of k was changed by a factor of two the results (core 
location and circulation) varied by less than 5 YO. To facilitate the comparison in figure 
6, the trajectories are scaled by the initial primary ring radius R, and translated so that 
the virtual origin (x,, z,) is located on the primary-ring axis of symmetry ( x  = LJ2) at 
the solid boundary (z = + 1). The time step between data points is At = 0.1. Primary- 
and secondary-ring trajectories from the simulation results are similar to those of the 
experimental work. The primary-ring diameter increases by a factor of approximately 
two. As in Walker et a f .  (1987), the point on the primary-ring trajectory corresponding 
to the origin of the secondary-ring trajectory is noted. The generation of secondary 
vorticity is responsible for the arrested radial spreading of the primary ring and the 
eventual rebound of the primary ring away from the wall. The obvious discrepancies 
between the simulation and experimental trajectories are attributed to differing values 
of Re,, and the 'fatter' vortex cores generated in the experiments. 

The time sequence of three-dimensional views of the primary-ring interaction with 
the boundary given in figure 7 shows the growth of an azimuthal mode-6 disturbance 
on the secondary vortex ring over the period 2.2 < t < 4.2. Here the perspective views 
are presented in the same way as those shown previously in figure 4 (i.e. surfaces of 
constant vorticity magnitude along with positive and negative coloured vorticity 
contours on the plane cut through the field). The generation and evolution of the 
secondary ring happens in the same manner as for the unperturbed case up until t z 3.2 
where the disturbance has grown significantly and becomes visually apparent (it will be 
shown subsequently that the disturbance has in fact grown substantially prior to this 
time). As the secondary ring propagates around the primary ring and is eventually 
compressed by passing through its centre towards the wall, the disturbance continually 
grows, resulting in the loop structure observed by Walker et a f .  (1987). 

To facilitate a comparison with the analytical model of the secondary-ring instability 
described in $4, it is necessary to characterize the vortex cores for the perturbed case 
(ii) in terms of the circulation r, as defined above, and the vortex-core radius a. At a 
particular time instant, the circulation was found by integrating the vorticity over the 
area A enclosed by the contour defined by k = 0.0375. Similarly, the vortex-core radius 
was defined as the radius of gyration about the centre of vorticity specified by (x,a; 
this second moment of the vorticity distribution over region A is then given by 

Figures 8 (a)  and 8 (b) respectively show the vortex-core circulation (scaled with Ri)  and 
the non-dimensional core radius a / R ,  as a function of time for both the primary and 
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FIGURE 8. Properties of the primary (0) and secondary (*) rings: 
(a) circulation magnitude; (b)  core radius. 

secondary vortex rings. Note that the circulation magnitude has been plotted since the 
primary and secondary vortex cores have opposite signs of circulation corresponding 
to their opposite senses of rotation. During the lifetime of the secondary vortex ring 
(2.8 d t d 4.3), the circulations of both the secondary and primary rings decrease by 
approximately 25%. For t 3 3.0 the ratio of the magnitudes of the primary- and 
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secondary-ring circulations remains almost constant (less than 5 YO variation) at a 
value of ~ 1 ' 1 ~ / ~ ~ 2 ~  !z 3.5. During this same time period (2.8 < t < 4.3), the size of the 
secondary core increases by 40% and the primary-ring-core size decreases by 
approximately 15 YO. This observation agrees with the evidence presented in figure 5 
showing vorticity contours in the cross-stream plane as a function of time. 

The onset and evolution of instabilities developed in the secondary ring are now 
examined. The trajectory determination based on vorticity centroids serves as a useful 
starting point to analyse the secondary-ring development when azimuthal instabilities 
are present. For azimuthally undeformed cores (like the primary-ring core or the 
unperturbed secondary core), application of (3.1) at any plane of symmetry placed 
through a core unambiguously defines the location of its centre. However, application 
of this definition to the unstable (case ii) three-dimensionally deformed secondary 
vortex cores is not necessarily an efficient or straightforward procedure. Instead, the 
instantaneous position of the secondary-ring core was ascertained using (3.1) for a 
single plane intersecting the ring.axis. This position was then used as a convenient 
starting point for a subsequent determination of a vortex line passing circum- 
ferentially through the secondary-ring core. Vortex lines were determined by using 
the definition, dx/& = a/lal where s is the distance along the vortex line and x is the 
vector drawn to any point on the line. Using the full three-dimensional flow field at a 
given instant in time and starting from the initial location xo provided by (3.1), the 
vortex lines were obtained by numerically integrating the definition given above. Care 
must be exercised when using vortex lines to infer the behaviour of coherent lumps of 
vorticity, since the particular vortex line traced depends on the chosen starting location 
(see for example Robinson 1989). Here the starting location clearly resides on the 
interior of the secondary-ring core and thus the vortex line can be expected to remain 
there and properly terminate on itself. 

When significant azimuthal perturbations are present (case ii above), the temporal 
development of instabilities in the secondary ring can be studied quantitatively by 
observing the evolution of the vortex lines determined from the procedure defined 
above. Again note that the same basic sequence of events as given in figure 5 is followed 
for both the unperturbed and perturbed cases up to t z 3.2. Until this time, very little 
visual evidence of a growing disturbance is apparent. This behaviour is demonstrated 
clearly in figure 9 which shows a sequence of vortex-line images determined in the 
manner discussed previously for the secondary ring during the growth of an azimuthal 
(mode-6) disturbance. Changes in the mean radius of the ring result from its 
progression around and over the primary ring. The disturbance present in the 
secondary ring undergoes a rapid growth for the time period between t = 3.2 and 4.3, 
while over this same period the mean length scales (ring radius and core radius - see 
figures 6 and 86)  of both primary and secondary rings have changed relatively little (at 
most 30%). The deformations in the secondary ring become comparable to its mean 
size as it progresses over the top of the primary ring, becoming compressed by its 
passage through the primary-ring centre. The behaviour here is qualitatively different 
from the unperturbed case since only some portions of the secondary ring migrate close 
enough to the boundary to merge with the wall layer. These lower portions of the 
deformed secondary ring actually pass beneath and around the primary-ring core, 
while the upper ends of the secondary ring remain removed from the wall as it is 
progressively stretched. Cerra & Smith (1983) observed this same behaviour and found 
that this deformed loop structure is maintained to Reynolds numbers up to 
approximately 1600 where the onset of another type of evolution is observed which 
involves a complex interaction with the tertiary vortex ring. The instability evolution 
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FIGURE 9. Temporal evolution of the instability of the secondary ring. Vortex lines 
defining the secondary ring are shown. 
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FIGURE 10. Evolution of the secondary-ring instability amplitudes p ( 0 )  and [( +) from the 
numerical simulation at Re, z 645. The total perturbation amplitude E(* )  is also shown. 

observed here occurs on a much faster time scale than the mean motion of the 
secondary ring. Meanwhile, the primary-ring position remains essentially fixed. 

By analysing the secondary-ring evolution in the manner presented in figure 9, the 
amplitude evolution of the developing instability can easily be ascertained. For this 
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purpose the amplitudes p and g are respectively defined to be the radial and axial 
components of the azimuthal perturbation to the secondary ring. These amplitudes 
were determined by azimuthally averaging the core deformations at a given instant in 
time. The arithmetic mean over the interval [0,2n] defines the mean position of the 
secondary core, whereas the variance about this mean defines the perturbation 
amplitudes. A total perturbation is defined as the modulus of these two, 6 = (p,  + yL)1/2. 
Figure 10 shows the amplitude evolutions calculated in this manner and scaled by R,. 
Initially the radial perturbation p grows while the axial perturbation 5 is slightly 
damped. This is subsequently followed by rapid growth in the axial component and the 
eventual decay of the radial component. The total perturbation 6 grows continuously 
over this time period. Note that even for the period 2.6 < t < 3.2 when the growth of 
the disturbance is not visually apparent as in figures 7 and 9, a substantial increase in 
the disturbance amplitude takes place (approximately by a factor of 8). Over the entire 
evolution presented for 2.6 < t < 4.3 the total perturbation increases by a factor of 
approximately 65. 

4. Analytical model for secondary-ring instability 
The numerical simulations provide a framework for studying the sequence of 

processes associated with the vortex ring impinging on a solid boundary. This sequence 
involves the formation and evolution of a secondary vortex ring as discussed in $3.  The 
evolution of the secondary ring when weak perturbations are present in the flow is now 
examined. In particular, an analytical model for the onset and linear evolution of the 
azimuthal secondary-ring instabilities was developed. 

4.1. Formulation of stability problem 
The dynamics of the secondary vortex ring during the early development of instability 
can be characterized by two distinct time scales. After the formation of the secondary 
ring, the primary-ring size and position remain almost constant. Therefore, the 
primary-ring motion is neglected in the analysis. As the secondary ring propagates 
slowly around the primary ring, azimuthal perturbations develop and grow rapidly 
leading to large distortions and the generation of small scales. The mean motions of the 
secondary ring occur on a relatively slow time scale which can be characterized by 
R,/ V, (the time required to propagate one radius R, at the instantaneous mean velocity 
Yo). This mean motion can be decoupled from the instability dynamics which occur on 
a relatively fast time scale l/a (where a is the instability growth rate), since 
a R J 6  %- 1. 

The dynamics were modelled by two inviscid vortex rings in the presence of their 
images (inviscid boundary). Figure 11 shows a schematic of the problem formulation. 
The subscripts 1, 2, 3 and 4 correspond to the primary ring, the secondary ring, the 
primary-ring image, and the secondary-ring image, respectively. Simulation results 
suggest that viscous effects (while helping to fix the primary-ring position) only weakly 
modify the secondary ring motions. Inclusion of the wall boundary layer has a 
negligible effect since it is in such close proximity to its image. The vortex cores were 
approximated by uniform distributions of vorticity. The secondary-ring-core radius a, 
was assumed to be small relative to the ring radius R,, and relative to the instability 
wavelength 2nR2/n (n is the azimuthal mode number); this is in accordance with the 
long-wavelength approximation. These assumptions lead to an asymptotic ap- 
proximation for the core characteristics, but they also introduce a limit on the number 
of azimuthal modes for which the analysis will be valid, na,/R, < 1 (Widnall et al. 
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FIGURE 11. Schematic of the vortex-ring model considered in the analysis. 

1974; Moore & Saffman 1974). However, comparisons between the exact and 
asymptotic dispersion relations for waves on a vortex filament show good quantitative 
agreement for na,/R,  x 1 (Widnall et al. 1974). For larger values of na,/R,  the 
asymptotic result predicts spurious instabilities. In the present analysis, the instability 
is driven by the presence of the primary ring so the results are relatively insensitive to 
the secondary-ring-core characteristics. When comparing to numerical results the 
effective core size, determined quantitatively from the simulations as shown in figure 
8 (b), was used. 

The instability evolution is described by a sequence of 'local' stability calculations 
under a quasi-steady assumption. The mean position of the secondary ring was 
temporarily considered fixed while the local growth rate was calculated. This is justified 
by the relatively small change in the mean position as compared to the instability 
growth. The stability analysis follows the earlier work of Widnall & Sullivan (1973) in 
which they investigated the stability of an isolated vortex ring propagating freely 
through a fluid. 

The perturbation in the secondary ring was taken to be an azimuthally periodic 
displacement in both the radial p and axial 5 directions. These displacements result in 
induced velocities which can either amplify or damp the initial perturbations. The ring 
positions are referenced to a coordinate system which moves with the mean axial 
velocity of the secondary ring. A position vectory is introduced to describe the location 
on the secondary ring where the induced velocity was calculated 

y = (R,+pein")F+(Sei"H)z". (4.1) 

The unit vectors F, d and z" correspond to the local radial, azimuthal and axial 
directions, respectively. The induced velocity at y results from the primary ring 
represented by the vector 
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y, = (R, cos g1) i+ (R, sin 6,) d- (h, - h,) i, 

y, = (R ,  + p  einoa) cos 6, i+ (R ,  + p  einoz) sin 6, d+ (Se'n") i, 

y, = ( R ,  cos 6,) i+ (R, sin 8,) d- (h,  + h,) i, 

(4.2) 

the self-induction of the secondary ring represented by the vector 

(4.3) 

and the two image rings represented by the vectors 

(4.4) 

y, = (R ,  +pein@4) cos 6, i+ (R ,  + pe'n") sin G, b+ (- 2h2 + Seinoa) i. (4.5) 

The angles 0, (i = 1,4) correspond to the azimuthal positions of the vectors y+; 8, 
provides the relative angle between 0 and Si, 8, = 0,-0. These vectors are shown 
schematically in figure 11. 

From the Biot-Savart law, the total induced velocity at y resulting from both rings 
(and their images) is given by 

(4.6a) 4cv) = 41cv) + 4 2 w  + 43b) + 4acY), 

where (4.6b) 

C, is a contour around the ith ring and ri is the circulation of the ith ring. The induced 
velocities q,, q3 and q,, qa result from the primary and secondary rings, respectively. 
When y, is close to y, details of the secondary-ring vortex core were used to estimate 
the local induction. Substituting y and y, (i =,1,4) into (4.6) leads to general 
expressions for the induced velocities: 

4,Cy) = U,,,i+ ~ , z ^ + ( ~ e i n 8  UC,+peine U,,)f  

+([eine~,+peineV')z^, i =  1,3,4, (4.7) 

(4.8) q2dy) = V,, i+ (Cein@ U,,) P+ ( p  einH 5,) 2, 
where U and V are the radial and axial components, respectively. Integrals defining the 
various velocity components of (4.7) and (4.8) are given in the Appendix. The first 
subscript on the velocity components signifies the secondary-ring 'source' perturbation 
(i.e. 0 for mean quantities, p for radial perturbations, or 5 for axial perturbations). The 
second subscript identifies which ring provides the induction. The secondary-ring self- 
induction velocity q2 is identical to the expression derived by Widnall & Sullivan (1973) 
for the long-wavelength stability of an isolated ring. 

4.2. Stability characteristics 
The induced motion of the secondary vortex ring satisfies a kinematic equation derived 
from the temporally varying position vector. In the absence of any constraints on the 
ring motion, 

where y, is the position measured from a fixed reference frame and Vn is the mean axial 
velocity of the secondary ring. Differentiating (4.1) with respect to t yields 

(4.10) 



22 

On combining (4.6k(4.10) the mean velocities for the secondary ring become 
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(4.1 1) 
dR u, = 2 = u,, + UO3 + uo4, 
dt 

Vn = Voi+ Vo2 + Vo3 + Vo4. 

The instability amplitudes are governed by 

(4.12) 

(4.13) 

(4.14) 

‘p=  V p 1 + V p 2 + y , 3 + 5 4 3  ‘<= \ 1 + \ 3 + \ 4 ‘  

These equations describe the growth or decay of disturbances for a given position of 
the secondary vortex ring. In general, the mean position of the secondary ring (and 
thus Up, U,, ”;, and V,) varies slowly with time and (4.13) and (4.14) are non- 
autonomous. The equation parameters also depend on the ring circulations and the 
secondary-ring-core characteristics. 

Three different approaches for solving (4.13) and (4.14) were considered. In the first 
approach, the stability equations were simultaneously integrated with the cor- 
responding equations for the mean position. This provides a completely analytical 
solution, requiring only initial values for the mean position and the disturbance 
amplitudes. In the second approach, (4.13) and (4.14) were integrated for the 
disturbance evolution, but the mean positions derived from the numerical simulations 
were used. This has the advantage of separating the stability results from the mean 
position results when comparing to the simulations. 

In the third approach, the variations of Up, U,, V’ and Vc were neglected and it was 
assumed that the two components of the ring perturbation have solutions of the form 

p(t) = poeRt, <(t) = Cnenf. (4.15) 

This leads to a characteristic growth rate for the total perturbation 6 = ( p2 + yL)l/’. The 
real part of r gives the temporal growth for ( and the imaginary part gives the 
frequency for oscillations around the mean position. Substituting (4.15) into (4.13) and 
(4.14) and imposing the solvability condition yields 

ci = ;(q+ V,)+;[(u,+ 5)”4(Uf Vc- uc F y .  (4.16) 

This provides a simple demarcation for the onset of instability. In the absence of the 
primary and image rings, U,, = 5 = 0 and U, = UC2, V, = <,2. Equation (4.16) then 
reduces to 

ci = [U,, V’211’a, 

in agreement with Widnall & Sullivan (1973). 
When focusing on the characteristic growth rate, the instability can be described in 

terms of the dimensionless quantities r = r1/r2, u2 = a, /R, ,  i? = R,/R, ,  5, = h,/R,, 
and L2 = h2/R2. An instability growth-rate parameter (7 can then be expressed as 

#(r,ii2,R,fil,h2;n) = a4nR;/T2.  

For fixed ring positions and fixed secondary-ring characteristics, 8 depends only on the 
relative circulation r a n d  the mode number n. When r = 0, 8 is purely imaginary for 
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FIGURE 12. Secondary-ring mean trajectory as predicted by the analysis (+) and from the 
numerical simulation (0). The primary-ring position (r l ,  z,) used in the analysis is given by ( x ). 

all modes (i.e. perturbations oscillate without growth or decay). As r is increased, the 
different modes - starting with n = 1 - become unstable; the value of r at the onset of 
instability for each mode will depend on the parameters a,, R, h,, h,. 

4.3. Analytical results 
In this analysis, the primary- and secondary-ring circulations and the secondary-ring- 
core characteristics were taken to be constant. Values for these parameters are 
extracted from the numerical simulations as described in $3. Calculations for the mean 
propagation of the secondary ring are shown in figure 12. The trajectories were 
calculated using (4.1 1) and (4.12) with parameter values rl = -4, I., = 1.14, and 
a, = 0.18 corresponding to the simulation results of figures 6 and 8. Numerical results 
are presented for comparison. The time step between data points, At = 0.1 , is the same 
for the analysis and simulation. The initial ring position for the analysis was chosen to 
match the simulation at t = 3.0. At this time the secondary ring first becomes 
‘distinguished ’ from the vorticity on the wall and the primary-ring position becomes 
almost fixed. The location (rl, zl) signifies the fixed position of the primary ring used 
in the analysis. The trajectories from the two methods are in good agreement from 
t = 3.0 to 3.4. The most significant difference after t = 3.3 is the rate of propagation 
along the trajectory, rather than the shape of the trajectory. These differences can be 
traced to viscous and non-uniform core effects, not accounted for in the analysis. 
Simulations for different flow conditions show a departure from inviscid ring- 
propagation rates as the level of viscous decay or ring-core distortion is increased. 

To calculate the evolution of the instabilities, (4.13) and (4.14) were integrated with 
the parameter values used in figure 12. In the first instance, the case where U,,, U,, V,, 
and were determined from the mean trajectories calculated using (4.1 1) and (4.12) 
is considered. Figure 13(a) shows the amplitude evolutions for n = 6 calculated from 
the model in conjunction with the numerical simulation results. The initial amplitudes 
were chosen to match the numerical values at t = 3.0. The radial position at t = 3.0 is 
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FIGURE 13. Evolution of the secondary-ring instability amplitudes p (solid) and 5 (dashed) as 
predicted by the analysis (+) and the numerical simulation (0). (a) Analysis based on analytical 
mean trajectories, (6) analysis based on numerical simulation mean trajectories. 

R ,  = 2.0 which gives na,/R, x 0.54. The amplitude curves show an initial growth in p 
while 6 is being damped. This is followed by a rapid growth in and an eventual decay 
of p. The amplitude curves from the analysis are in good agreement with the simulation 
results. The increasing deviations for the p amplitude beyond t x 3.5 are the result of 
differences in the mean trajectories. 

The amplitude curves calculated using values of Up, U,, V,, and Vt: that were 
determined from the numerical-simulation mean trajectories are now considered. 
Using the numerical mean trajectories permits the calculation of the amplitude curves 
at larger times where the analytical trajectories show significant deviations from the 
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simulations. Figure 13 (b)  shows the amplitude evolutions for n = 6 calculated from the 
model in conjunction with the numerical simulation results. The amplitude curves from 
the analysis are in good agreement with the simulation results up to t x 3.7. Beyond 
t x 3.7 the curves continue to be in qualitative agreement. The large differences at 
t = 4.0 are likely the result of nonlinear effects (figure 9 shows that the amplitudes at 
t x 4.0 are O( 1)). The good agreement between the analytical and numerical results 
suggests that the analytical model contains the essential features that drive the 
instability of the secondary ring. 

Analytical predictions for the growth-rate parameter CT are also in reasonable 
agreement with the simulation results. For the simulation result of figure 10, the 
growth rate for the combined amplitude 6 at t = 3.1 is CT x 2.8. Using (4.16) for the 
same conditions, the analysis gives a growth rate of cr = 3.5. This difference can easily 
be attributed to the additional assumptions that went into deriving (4.16) from (4.13) 
and (4.14), most significantly the assumption that p and y evolve with the same growth 
rate. 

In the absence of the primary ring, the thin-core secondary ring would be stable to 
small perturbations. The primary ring induces a strain across the core of the secondary 
ring. When this strain field is of sufficient magnitude, it amplifies the secondary-ring 
perturbation through vortex tilting and stretching similar to the secondary-instability 
mechanism in shear flows (Orszag & Patera 1983; Herbert 1983). The perturbation 
induces a rotation which, in the presence of strain, leads to vortex stretching. The 
stretching amplifies the perturbation and enhances the rotation. This process leads to 
very rapid growth of the instability. Additionally, Smith et al. (1991) showed that the 
means by which a three-dimensional disturbance to a vortex filament spreads and 
grows is the result of the nonlinear interaction between the vortex and the background 
strain, with the amplification strongly dependent on the level of this strain. A similar 
mechanism is responsible here except that the strain is associated with the presence of 
the primary vortex ring rather than with the background mean strain. 

5. Conclusions 
The flow associated with a vortex ring impacting a solid boundary was investigated 

by numerically solving the full Navier-Stokes equations. The essential dynamics of this 
process had been identified earlier in experimental studies. The numerical results show 
good qualitative agreement with the experiments and also provide access to the 
quantitative details of the flow. As the vortex ring approaches the solid boundary, a 
secondary vortex ring is generated. The secondary ring propagates around the initial 
(primary) ring due to the combined influence of the primary- and secondary-ring 
inductions. One of the key features observed in experiments and in the numerical 
simulations is the development of an instability in the secondary vortex ring. This 
instability leads to a breakup of the secondary vortex, giving rise to smaller-scale 
coherent motions. 

The dynamics of the instability were further investigated by developing an analytical 
model for the evolution of the secondary ring. The analysis was based on quasi-steady 
and long-wavelength approximations. The instability of the secondary ring is governed 
by a pair of coupled ordinary differential equations. These equations describe the 
temporal evolution of the axial and radial components of the instability. Comparisons 
between the analysis and simulation show good agreement for the early development 
of the instability. The instability of the secondary ring is the result of vortex stretching 
and tilting in the presence of the primary-ring strain field. The strength of the 
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instability depends on the ratio of the primary- and secondary-ring circulations and on 
the position of the secondary ring relative to the primary. For the conditions of the 
numerical simulations, strong instability growth is observed. This is in contrast to the 
isolated thin-core vortex ring, which is stable to long-wavelength perturbations. 
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Appendix 

given by 
The induced velocities resulting from the primary ring and its image i =  1, 3 are 

uni = - r' Gi3I2hRl cos 6, de,, 
47t --r[ 

vni = - G,312R,(R, - R,  cos 6,) d6,, (A 2) 

- 3Gy5I2(hR, R,  cos 6, - hR: cos' 6,) d6,, 

(GY3I2R, cos 6, - 3G;"'h2R, cos 6,) d6,, 

v<i = &J, ri - 3G;5/2hR,(R, - R, cos 6,) dg,, 

where G,  = RI+R:-2Rl R , c o s ~ ~ , + ~ ~ ,  (A 7) 

with h = h,-h, for i = 1, h = h,+hl for i = 3, and r3 = -rl. 

given by 
The induced velocities resulting from the secondary-ring self-interaction i = 2 are 

(A 8) V - 5 p Gi3l2 R5;( 1 - cos 8,) d6,, 
O 2  - 47t -n 

where 

+ eitLO, - ( I  -cosG,)-$(l +elnA2)(1 -cos/i,))d6,. (A 10) 

G ,  = 2 R 3  I - cos 6,). (A 11) 
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The induced velocities resulting from the secondary-ring image i = 4 are given by 

U,, = 3 G;3/2hR2 cos 8, d8,, 
471 -n 

V,, = 2 rn G;'//"R;( 1 - cos 84) dg,, 

Up, = 5 r (G;3/2h ein64 (cos 6, +in sin 8,) 
471 --r[ 

-3G,5/2hR~cos84(1 +ei"'4)(1 -c0s8~))d8,, (A 14) 

- 3Gi5l2 h2R, cos 8,( 1 - e'"'4)) de4, (A 15) 

-3G;5/2Ri(1 -cos8,)2(1 +ein'4))d64, (A 16) 

(A 17) 

(A 18) 

V, = 2 (In - 3Gl5l2hR;( 1 - cos 8,) (1 - e'"'4) d8,, 

where 

with h = 2h,. 
The integrals for i = 1,3,4 are evaluated numerically for given ring positions and 

ring characteristics. In evaluating the integrals for i = 2, the integrands become 
singular when 8, = 0. However, these integrals can be evaluated by accounting for the 
finite size of the secondary-ring core. Our results are based on the asymptotic local- 
induction approximation used by Widnall & Sullivan (1973). 

G, = 2R;( 1 - cos 8J + h2, 
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